
~ Pergamon 
www.elsevier.eom/Ioeate/jappmathmeeh 

J. Appl. Maths Mechs, Vol. 68, No. 2, pp. 241-248, 2004 
© 2004 Elsevier Ltd 

All rights reserved. Printed in Great Britain 
PII:  S0021-8928(04)00032-2 0021-8928/S--see front matter 

SELF-SUSTAINED OSCILLATIONS OF RAYLEIGH AND 
VAN DER POL OSCILLATORS WITH MODERATELY 

LARGE FEEDBACK FACTORSt 

L. D. A K U L E N K O ,  L. I. K O R O V I N A ,  
S. A. K U M A K S H E V  and  S. V. N E S T E R O V  

Moscow 

e-mail: kumak@ipmnet.ru 

(Received 16 January 2003) 

Periodic motions of essentially non-linear self-sustained oscillatory systems, described by Rayleigh and Van der Pol equations, 
are constructed and investigated. The period and initial value of the velocity of the system, which determine the self-sustained 
oscillations of the oscillators for small and moderately large values of the feedback factors, are calculated by the Lyapunov- 
Poincar6 method using a developed accelerated-convergence algorithm and a continuation with respect to a parameter. The 
trajectories and limit cycles are also constructed with a guaranteed relative and absolute error. The qualitative features of 
the self-sustained oscillations due to an increase in the self-excitation factors are established and the oscillators are compared. 
The results of a numerical investigation of periodic solutions of the Van der Pol equation are compared with familiar solutions. 
© 2004 Elsevier Ltd. All rights reserved. 

There is an extensive literature devoted to qualitative, analytical and numerical methods of 
investigating self-sustained oscillations for systems with one degree of freedom (see, for example, the 
monographs [1-7] and the bibliographies they contain). The qualitative and topological approaches to 
investigating dynamical systems in the phase plane which have been developed, and which are described 
by Li6nard-type equations, give criteria (sufficient conditions) for the existence and stability of limit 
cycles (self-sustained oscillations). The position and shape of a limit cycle can be determined 
approximately in the phase plane using the method of isoclines [2-7] and by employing numerical 
methods. This approach is not effective at present for highly accurate mass operative calculations in 
the parametric synthesis of self-sustained oscillatory systems. 

For small values of the feedback factors (the self-excitation factors), i.e. for quasi-linear self-sustained 
oscillatory systems, approximate analytical methods of non-linear mechanics due to Lyapunov-Poincar6, 
Krylov-Bogolyubov, etc. [2, 5-10] are widely used. If this factor is asymptotically large, a singularly 
perturbed self-sustained oscillatory system is obtained, which performs relaxation oscillations [1]. The 
limit cycle is then constructed approximately using Dorodnitsyn's method [11, 5] and relaxation- 
oscillation methods [7, 12, 13]. 

The intermediate region of variation of the self-excitation coefficients is of considerable interest from 
the theoretical, procedural, computation and particularly the applied aspectS. There is an extremely 
limited number of publications, the results of which relate to constructing periodic modes of operation 
(limit cycles) for self-sustained oscillatory systems With moderately large values of the dimensionless 
feedback factors. We note the numerical results obtained for the Van der Pol equation in [14, 15] without 
justifying the corresponding estimates of the accuracy of the calculations. The approaches employed 
are extremely cumbersome and cannot easily be generalized to self-sustained oscillatory systems of large 
dimensions. 

The numerical-analytical method of accelerated convergence in combination with the continuation 
with respect to a parameter (self-excitation factor) developed in [16] enables one, using the Lyapunov- 
Poincar6 method [10], to construct the required solutions for a wide range of self-sustained oscillatory 
systems. In particular, the case of the Van der Pol type equation with a non-linear restoring force, 
proportional to the third and fifth powers of the deviation, has been investigated. The dependence of 
the periods and the amplitudes of the self-sustained oscillations on the feedback factor was established 
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in [16]. Below, using this approach we obtain a practically exact solution (with a relative error of 
10-~-10 -s) of the problems of the self-sustained oscillations of Rayleigh and Van der Pol oscillators and 
we compare their main characteristics, namely, the periods, amplitudes, phase trajectories and limit 
cycles. 

1. R E D U C T I O N  OF THE EQUATIONS TO STANDARD FORM 

Consider a Li6nard-type equation containing power-law functions of the generalized coordinate x and 
the velocity 2 of the form 

m J( + g (x ,  £c)£c + f ( x )  = 0 

g = -k lx l~ l jc f f  - I  +llx[Sl.l~l 6-1, f -" c l x l a - I x  

m , c , k , l > O ;  ,,o>~,[~,~t, 8, t~_>O; 8 + t ~ > ~ + ) ,  

(1.1) 

The constant m has the meaning of an inertial characteristic, while c is the coefficient of elasticity 
(non-linear when o~ e 1) of the restoring forcer. If 0 < ~ ~ 1, the functionfis close to a Rayleigh function 
when Ix I ~ 1; when c~ = 0 we havef  = csignx, x ~ 0. 

It follows from the qualitative theory of dynamical systems [2-5] that, for certain sufficient conditions, 
the stationary point x = 2 = 0 is unstable. Equation (1.1) allows of a periodic solution, to which the 
stable limit cycle corresponds. Since the structure of Eq. (1.1) does not change when we make the change 
of variables x ~ -x, 2 ~ -2, the limit cycle is a centrally symmetric closed curve, where x( t  + T )  - -x ( t ) ,  
and 2T is the period of the self-sustained oscillations. Hence, it is sufficient to obtain the required 
functions in any half-period. For specific values of the system parameters the required solution and its 
characteristics (the period, amplitude, etc.) can be constructed numerically (see below). 

Equation (1.1) contains four dimensional parameters m, c, k and l. We introduce the following 
dimensionless quantities by linear transformations of the variable x and the argument t 

x *  = d - I x ,  d = ( k l l ) t l - ~ ) l ¢ ( c l m )  -n/(~¢) 

t* = v t ,  v = ( k l l ) ( a - l ) l ( ~ ) ( c l r n )  I/~ 

= 8 + a - ~ - ~ / > 0 ,  1"1 = ~ -Y ,  )~ = 2 + ( c t - 1 ) r l / { > 0  

K = ( a -  1)rl/(~.~) --- ( c~ -  1)r l / [2~ + ( a -  1)q]  ~e 1 

(1.2) 

Further, Eq, (1.1) will be rewritten in dimensionless variables x* and t* (1.2) (for brevity the asterisk 
will henceforth be omitted). It contains a single dimensionless parameter ~ > 0 - the feedback factor 
or the self-excitation factor of the self-sustained oscillations 

x. + ~(_ ixt~lJelw- 1 + ixlSijel~- a)j e + ixl~- 1X = 0 

= kd[~+v- lvV-2 = / d  ~+~- lv~-2___ mMcClLk K 
m m 

M = - l - C ,  C = ~ ( 7 8 - ~ [ 3 + 2 1 3 + y - 2 8 + ~ )  

L = ~--~()~0¢- 1)([3+7- 1)+(1 - cz)('/-2)) 

K = ~ ( -  ~.(K- 1)(8 + ~ -  1) + (1 - ~ ) ( 6 -  2)) 

(1.3) 

The parameter e in (1.3) is expressed in termsof the initial dimensional quantities m, c, l and k (1.1) 
and is a lengthy power-law function with rather complex expressions for the exponents M, C, L and K 
in terms of the initial exponents a, [~, 7, 8, ~. With the above assumptions, the numerical values of M, 
C, L and K are bounded, since )~{ > 0 by relations (1.2). In particular, for a Van der Pol type equation 
with linear and non-linear functionsf(x) (1.1) of the restoring force, by means of the change of variables 
(1.2) we obtain the following representation [16] 
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Jg-£(1-x2).2+lxlet-lx = 0, t~>0 

13 = 0, y = o~ = 1, 8 = 2; d = (k/l) 1/2, 

Z = ( 1 -  ~)/4,  e = k(cm)-l/2(k/l)-X 

V = (clm)l/2(k/l) x (1.4) 

When {x = 1, i.e. in the case of the classical Van der Pol equation, we have Z = 0, e = k/c'~-ccmm; the 
self-excitation factor is independent of the parameter l. Self-sustained oscillations described by Eq. (1.4) 
have been investigated in detail in [16] for ~ = 3 and 5. 

In applied problems, Van der Pol type equations are usually obtained using artificial methods from 
the initial ones, which have the form of Rayleigh equations and which describe different physical 
processes of a self-sustained oscillatory character [1, 5-8, 10]. For a Rayleigh type equation, similar to 
(1.4) we obtain the representation 

.t'-e(1-Sc2).2 +lx]CtTlx = O, o~>0 

= ~i = 0, "y = 1, G = 3; d = (km/cl) °, v = (m/c)-°(k/1) 1/2(~-1) (1.5) 

p = 1 / (~+ 1), e = ( d l m ) ~ l  

In a similar way, for the classical Rayleigh equation (with c~ = 1), we obtain expressions for the 
normalizing coefficients: v = (c/m) 1/2, d = (km/cl)V2; the self-excitation factor e = (k/mc) 1/2 is also 
independent of the parameter  l. Note that all the main characteristics of the self-sustained oscillations 
(apart from the period) will depend on I in the case of the classical Rayleigh and Van der Pol equations. 

2. S E L F - S U S T A I N E D  O S C I L L A T I O N S  OF A R A Y L E I G H  O S C I L L A T O R  
F O R  M O D E R A T E L Y  L A R G E  S E L F - E X C I T A T I O N  F A C T O R S  

We will consider the problem of a highly accurate construction of the limit cycles and trajectories for 
Rayleigh's equations for moderately large values of the parameter  of the problem 

. t ' - e (1 - .22 ) .2+x  = 0, 0_<e_<e* ( e - 1 0 )  (2.1) 

x(0) = x(2T),  .2(0) = .2(2T) 

The half-period T is unknown and is to be determined together with the other characteristics of the 
self-sustained oscillations. The unique stable periodic solution is constructed using the Lyapunov- 
Poincar6 method [10] in the same way as described previously in [16]. We replace the argument t by "~ 
with the aim of clearly distinguishing the dependence on the unknown T. In view of the central symmetry, 
as pointed out in Section 1, it is sufficient to confine ourselves to considering the problem over a half- 
period A'c = ®, where ® > 0 is any fixed number, it is convenient to put ® = 1. As a result we obtain 
the boundary-value problem 

J(-~T(1-T-2Sc2)x+T2x = 0, x = x(x,e)  

x(0, e) = 0, .2(0, e) = b, x(1, e) = 0, .2(1, e) = - b  

T =  T(e), b = b(e), 0 < x < l  

(2.2) 

Here  and henceforth the dots again denote derivatives with respect to the argument z. The problem 
contains four unknown parameters (two constants of integration and the parameters T and b), which 
are found from the four boundary conditions. Its solution enables us to obtain the "right half" of the 
limit cycle. The "left half" is centrally symmetric; it is obtained by replacing x = 0 by "c = 2 or z = -1. 

The b0undary-value problem for constructing a solution corresponding to the "upper" (or "lower") 
half of the cycle [16] is formulated in a similar way, 

x(O,e) = -a ,  .~(0, E) = 0; x(1, E) = a, 2 ( I ,£ )  = 0 
( x = - a , . 2 = 0 , 1 ; = 2 , - 1 ) ,  a = a(e) (2.3) 
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The unknown a in problem (2.3) has the mechanical meaning of the amplitude of the self-sustained 
oscillations. Its determination (in addition to b and T) and its investigation as a function of the parameter 
e is of considerable interest when investigating the self-sustained oscillations of a Rayleigh oscillator. 

We will describe the procedure for the numerical-analytical solution of problem (2.2) very briefly. 
We represent the equation in the standard Cauchy form by introducing the variable velocity y = 2. In 
addition, we introduce sensitivity functions (p, w) and (q, z), which are derivatives of the solution 
(x, y) with respect to the parameters T and b; we obtain the following relations (the dependence of the 
unknown functions and parameters on e is not indicated for brevity) 

= y, 29 = - T Z x + e T ( 1 - T - Z y 2 ) y ;  x(0) = x(1) = 0, y(0) = b, y(1) = -b  

P = q, gl = - T 2 p + e T ( 1 - 3 T - 2 y 2 ) q ,  P = OxlOb; p(0) = 0, q(0) = 1 (2.4) 

= z, ~ = - T Z w - 2 T x + e T ( 1 - 3 T - 2 y 2 ) z + ( I + T - 2 y 2 ) y  

w = ~x l~T ,  z = Oy/~T; w(O) = z(O) = 0 

The boundary-value problem for x, y is formally independent of the unknowns p, q, w and z. After 
determining x('c), y('c) and T these functions are found by integrating two second-order independent 
linear Cauchy problems (see (2.4)). 

However, the sensitivity functions (p, w) and (q, z) introduced above, i.e. their values when t -- 1, 
enable us to refine the deficient values of the parameters T and b (according to boundary conditions 
(2.3)) in an accelerated-convergence Newton-type accelerated-convergence on the basis of certain 
estimates T0(e) and b0(e). For sufficiently small e > 0 we can take valu_ees corresponding to the zeroth 
approximation in the perturbation method [10] T0(0) = re, b(0) = 2rcH 3, a(0) = 2/'4 3. By successively 
increasing the parameter e in conjunction with extrapolation of the quantities T(e), b(e) and a(e) by 
means of the rapidly converging method [16, 17], by highly accurate integration of the Cauchy problems 
(2.4) we can construct periodic functions x(t,  e), 2(t ,  e) and the required quantities T(e), b(e) and 
a(e) with the required relative and absolute accuracy for moderately large values of e: 0 < e ~< e0 
10-10 2 . 

The main results of the calculations consist in finding the required quantities T(e) and b(e) for 
0 ~< e ~< 10; they are presented below: 

e 0.1 0.2 0.3 0.4 0.5 0.6 0.8 
T 3.14356 3.14946 3.15990 3.17287 3.19033 3.21156 3.26414 
b 3.62775 3.62926 3.63169 3.63519 3.63996 3.64630 3.66447 
e 1.0 1.2 1.4 1.6 1.8 2.0 2.2 
T 3.33164 3.41061 3.50007 3.59827 3.70368 3.81493 3.93099 
b 3.69180 3.72997 3.78028 3.84297 3.91732 4.00233 4.09645 
e 2.4 2.6 2.8 3.0 3.5 4.0 4.5 
T 4.05104 4.17446 4.30075 4.42955 4.76056 5.10177 5.45085 
b 4.19833 4.30664 4.42027 4.53834 4.84895 5.17574 5.51419 

5.0 5.5 6.0 7.0 8.0 9.0 10.0 
T 5.80616 6.16643 6.53093 7.26988 8.01912 8.77614 9.53918 
b 5.86138 6.21529 6.57471 7.30600 8.04979 8.80277 9.56383 

On the basis of these, the remaining characteristics of the oscillations can be determined by integrating 
the Cauchy problem. The data indicate that, when e increases, the period and initial value of the velocity 
in normalized time % corresponding to the limit cycle, increase monotonically with a derivative with 
respect to e (for e 1> 2) of the order of unity. Moreover, it can be established that the ratio b / T  = 1 
when e >> 1, i.e. y / T  -- 1 for t = 0 and e >> 1. A comparison of the numerical results with analytical 
calculations using perturbation theory (the Lyapunov-Poincar6 and Krylov-Bogolyubov methods) shows 
that the solution, to a first approximation in e, approximates the numerical solution fairly well when e 

0.1. 
In Fig. 1 the solid curves represent the half-period of the oscillations T and the indicated value of 

the velocity b as a function of the self-excitation factor e, 0 ~< e ~< 10. The algorithm described enables 
2 3 us to carry out accurate calculations for considerably larger values of e - 10 - 10.  

The last of the functions x(" 0 and y(x) in an interval equal to full period 0 ~< "c ~< 2 (0 ~< t ~< 2T in 
the initial time), for characteristic values of e are shown in Fig. 2. As was pointed out above, these 
functions satisfy the condition x(x - 1) =- -x('c), y(x - 1) --- -y('c); hence, we can confine ourselves to the 
interval 0 ~< "c <~ 1, i.e. 0 ~< t ~< T. When e ~< 1 the oscillations x(~) are "close" to harmonic (see the 
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curve for a = 1 in Fig. 2a). When ~ > I considerable deviations are observed, particularly the velocity 
y('c) (see Fig. 2b), which differs from cosinusoidal. Starting with e = 2 a relaxation form of oscillations 
is observed (with respect to the variable Y('0), which becomes very pronounced when ~ ~> 5 (see 
Fig. 2b). 

These properties of the self-sustained oscillations show up quite clearly in the graphs of Fig. 3, which 
show the limit cycles in the phase plane (x, y) for different values of a. We take the parameter "c = t/T, 
0 ~ "¢ ~< 2, related to the "natural" period of the oscillations, as the "natural" argument. When ~ ~< 1 
the limit cycles are "close" to an ellipse with semi-axes (b/T, b), b = 27r/~/3. As ~(a ~ 5) increases in 
the second and fourth quadrants, sharp turns (of the corner-point type) of the tangents to the curve 
are observed (a large local curvature), connected with the practically instantaneous change of the variable 
Y('0 (see Fig. 2b). 

Note that there are no detailed numerical-analytical investigations of the self-sustained oscillations 
of a Rayleigh oscillator for moderately large self-excitation factors in the available scientific literature, 
though there are sporadic numerical results [18, etc.]. The Rayleigh equations are the basis for describing 
many physical processes, whereas the Van der Pol equation, to which a considerable number of papers 
are devoted (see the list of references), is a corollary, obtained for quite burdensome additional 
conditions. 

3. S E L F - S U S T A I N E D  O S C I L L A T I O N S  OF A VAN DER POL 
O S C I L L A T O R  F O R  M O D E R A T E L Y  L A R G E  

S E L F - E X C I T A T I O N  FACTORS 

Similar to the investigations presented in Section 2, we constructed the characteristics of self-sustained 
oscillations for the classical Van der Pol equation for moderately large values of a 
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~t'-e(1--X2)3C+X = 0 ,  0 - < E ~ E  * ( 1 ~  10)  
(3.1) 

x(0) = x(2T), .~(0) = ,f(2T) 

This equation is ob__tained by differentiating Eq. (2.1) with respect to t and making the changes of 
variables k/32 ~ x, ~/35/~ 2. Hence, the limit cycle (x(t), 2(t)) - a trajectory in the phase plane - for 
Eq. (3.1) is equivalent to the curve ~/3 (2(0, 2(0 ) in problem (2.1). This leads to an additional considerable 
instability in the calculations for large e, in particular e - 10 (beginning with ~ ~ 5). 

A unique stable periodic solution is constructed using the Lyapunov-Poincar6 method [10]. The 
procedure of continuation with respect to the parameter e and the method of accelerated convergence 
are then used in the same way as previously [16]. The boundary-value problem for the variables (x, y) 
and the sensitivity functions (p, q) and (w, z) with respect to the parameters b and T of the type (2.4) 
is reduced in normalized time (with argument) "c to the form 

Y¢ = Y, 29 = - T  2x+ET(1-x2)y ,  x(0) = x(1) = 0, y(0) = b, y(1) = -b  

p = q, q = - T E p + e T ( 1 - x 2 ) q - 2 e T x y p ,  p(0) = 0, q(0) = 1 (3.2) 

v0=z, ~ = - T E w + e ( 1 - x 2 ) ( y + T z ) - 2 e T x y w - 2 T x ,  w(O) = z(O) = 0 

The algorithm for solving problem (3.2) is similar to that described above. Refining corrections 8T 
and fib are found recurrently from a system of the type (2.5), in which the coefficients and right-hand 
sides are obtained by integrating system (3.2) for specified T and b, beginning with To = T(0) and 
b o = b(O), and the quantities T(0) and b(0) are found by the Lyapunov-Poincar6 small-parameter 
method: T(0) = n and b(0) = 2ft. For the amplitude of the self-sustained oscillations a(e) we have 
a0 = a(0) = 2. The values obtained for b0 and a0 are obviously considerably greater than for a Rayleigh 
oscillator (see Section 2). The half-periods T(e) for both problems must be identical. Calculations confirm 
that the determination of the function T(e), using scheme (3.2), (2.5), requires a greater number of 
iterations due to the above-mentioned instability for e >> 1, beginning with e - 5. 

If we use the highly accurate values for T(e) presented in Section 2, the calculations of the coefficient 
b(e) are simplified considerably and require the integration of system (3.2) for (x, y) and (p, q) for 
specified T(e). 

The results of calculations ofy /T  and b(e) using the general scheme are presented below: 

E 0.1 0.2 0.3 0.4 0.5 0,6 0.7 
b 6.29386 6.32103 6.36886 6.43497 6.52101 6.62168 6.75056 
e 0.8 0.9 1.0 1.5 2.0 2.5 3.0 
b 6.89422 7 . ~ 6 9 3  7.23847 8.41259 9.97483 11.86048 14.034~ 
e 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
b 19.19177 25.39582 32.64521 40,93048 50.49040 60.62275 72.03648 
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They confirm the above conclusions regarding the accuracy of the calculations. The function b(e) is 
presented in Fig. 1 on a reduced scale of 1:10 by the dashed curve. The graph of the function T(~) 
practically coincides with the curve corresponding to self-sustained oscillations of a Rayleigh oscillator. 

In Fig. 4 we show graphs of the functions x(" 0 and y('c) for characteristic values of ~ (graph b). The 
shapes of the curves x(~) in Fig. 4(a) andy('c) inFig. 2(b) are identical (the curves are distinguished by 
a constant shift with respect to x and by the scale). Important properties of the self-sustained oscillations 
are illustrated by the family of limit cycles (Fig. 5). The basic known property is the fact that a(e) = 2 
(a(0) = 2) for all e > 0 [11-16]. 

The main results of a numerical investigation of the self-sustained oscillations of a Van der Pol 
oscillator for moderately large values of e - 10 and 20 can be found in papers published a long time 
ago [14, 15, etc.]. A comparison with these enables us to draw the following conclusions. 

1. The method and algorithm described above are extremely effective and simple. 
2. For each value of e the algorithm enables the accuracy to be monitored. There are constructive 

methods for considerably increasing the accuracy. This property hardly exists in [14, 15] and it is difficult 
to monitor the accuracy (only two or three decimal places are reliable). 

3. It is interesting to note that the values obtained above lie, as a rule, between the values given in 
[14] and in [15]. 

The proposed algorithms of the accelerated-convergence method and the method of continuation 
with respect to a parameter - the feedback factor - are extremely effective for finding periodic solutions 
and the limit cycles of systems described by the Rayleigh and Van der Pol type equations. They are 
based on the use of the properties of symmetry. The numerical-analytical investigations described 
enabled us to distinguish a number of characteristic features of the transition of systems from almost 
harmonic self-sustained oscillation modes to essentially non-linear (multifrequency) relaxation 
oscillations and to compare Rayleigh and Van der Pol oscillators for small and moderately large values 
of the feedback factors. 

This research was supported financially by the Russian Foundation for Basic Research (02-01-002525 
and 02-01-00157). 
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